Joint Denoising and Upscaling via Multi-branch and
Multi-scale Feature Network

PAWEL KAZMIERCZYK, Advanced Micro Devices, Inc., Poland
SUNGYE KIM, Advanced Micro Devices, Inc., USA

WOJCIECH USS, Advanced Micro Devices, Inc., Poland
WOJCIECH KALINSKI, Advanced Micro Devices, Inc., Poland
TOMASZ GALAJ, Advanced Micro Devices, Inc., Poland
MATEUSZ MACIEJEWSKI, Advanced Micro Devices, Inc., Poland
RAMA HARIHARA, Advanced Micro Devices, Inc., USA

31.2/0.859/0.17 29.3 /0.818 / 0.313 28.0 /0.762 / 0.41

Input (1spp,1080p) Ours (4K) Ref (8192spp,4K) Ours JNDS ONND-+up2x Ref

Fig. 1. Joint denoising and upscaling result of our technique in 4K resolution compared to the state-of-the-art
denoising and upscaling methods, JNDS [Thomas et al. 2022] and ONND [NVidia 2021] with built-in 2x
upscaling in OptiX™ SDK 8.0.0. Our result exhibits more details in the complex areas and outperforms in
quantitative quality metrics PSNRT/SSIMT/LPIPS]). Metrics are calculated on a full resolution image. Noisy
1spp input in 1080p resolution is shown in 2X upscaled for visualization purpose. Scene from the City Alley.

Deep learning-based denoising and upscaling techniques have emerged to enhance framerates for real-time
rendering. A single neural network for joint denoising and upscaling offers the advantage of sharing parameters
in the feature space, enabling efficient prediction of filter weights for both. However, it is still ongoing research
to devise an efficient feature extraction neural network that uses different characteristics in inputs for the
two combined problems. We propose a multi-branch, multi-scale feature extraction network for joint neural
denoising and upscaling. The proposed multi-branch U-Net architecture is lightweight and effectively accounts
for different characteristics in noisy color and noise-free aliased auxiliary buffers. Our technique produces
superior quality denoising in a target resolution (4K), given noisy 1spp Monte Carlo renderings and auxiliary
buffers in a low resolution (1080p), compared to the state-of-the-art methods.

CCS Concepts: » Computing methodologies — Neural networks; Ray tracing.

Additional Key Words and Phrases: Multi-branch, U-Net, Denoising, Upscaling

Authors’ Contact Information: Pawel Kazmierczyk, Pawel Kazmierczyk@amd.com, Advanced Micro Devices, Inc., Poland;
Sungye Kim, Sungye.Kim@amd.com, Advanced Micro Devices, Inc., USA; Wojciech Uss, Wojciech.Uss@amd.com, Advanced
Micro Devices, Inc., Poland; Wojciech Kalinski, Wojciech.Kalinski@amd.com, Advanced Micro Devices, Inc., Poland; Tomasz
Galaj, Tomasz.Galaj@amd.com, Advanced Micro Devices, Inc., Poland; Mateusz Maciejewski, Mateusz.Maciejewski@amd.
com, Advanced Micro Devices, Inc., Poland; Rama Harihara, Rama.Harihara@amd.com, Advanced Micro Devices, Inc., USA.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3728297.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

HTTPS://ORCID.ORG/0009-0008-8880-2601
HTTPS://ORCID.ORG/0000-0003-0219-2192
HTTPS://ORCID.ORG/0009-0005-8419-7991
HTTPS://ORCID.ORG/0009-0005-6357-4831
HTTPS://ORCID.ORG/0000-0002-2835-4180
HTTPS://ORCID.ORG/0009-0006-6468-0502
HTTPS://ORCID.ORG/0009-0009-5351-8931
https://orcid.org/0009-0008-8880-2601
https://orcid.org/0000-0003-0219-2192
https://orcid.org/0009-0005-8419-7991
https://orcid.org/0009-0005-6357-4831
https://orcid.org/0000-0002-2835-4180
https://orcid.org/0000-0002-2835-4180
https://orcid.org/0009-0006-6468-0502
https://orcid.org/0009-0009-5351-8931
https://doi.org/10.1145/3728297
https://doi.org/10.1145/3728297

16:2 Kazmierczyk et al.

ACM Reference Format:

Pawel Kazmierczyk, Sungye Kim, Wojciech Uss, Wojciech Kalinski, Tomasz Galaj, Mateusz Maciejewski,
and Rama Harihara. 2025. Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network.
Proc. ACM Comput. Graph. Interact. Tech. 8, 1, Article 16 (May 2025), 18 pages. https://doi.org/10.1145/3728297

1 Introduction

Monte Carlo (MC) rendering has been ubiquitously used in generating photorealistic images. It
is stochastically unbiased and eventually converges toward an accurate radiance. However, MC
integration requires thousands of samples per pixel (spp) to produce visually appealing noise-free
images. The source of the challenge lies in the inherent randomness of the samples that can result
in scattered rays failing to hit a light source, even after multiple bounces. Even when all rays hit a
light source, approximating the rendering equation integral [Kajiya 1986] with a finite number of
samples can still fall short of producing high-quality images and show visually annoying noise.
The higher number of samples per pixel, the higher chance of less noise in an image. However,
it is not viable to use such large numbers of samples per pixel to render high-quality path-traced
images in real-time gaming due to prohibitively expensive computational costs.

MC denoising has played a pivotal role to address the problem of the high number of samples
required in MC path tracing by reconstructing high-quality pixels from a noisy image rendered with
low samples per pixel within a limited time budget. Denoisers, in general, take noisy diffuse and
specular radiance signals as input, often accompanied by auxiliary buffers like albedo and normal,
to denoise them separately with different filters. The resulting denoised signals are then composited
into a final color to better preserve fine details. As such, many real-time rendering engines include
multiple denoising filters for each noisy signal from diffuse lighting, reflection, and shadows. With
significant advances in neural techniques in recent years, deep learning-based MC denoising [Bako
et al. 2017; Balint et al. 2023; Huo and eui Yoon 2021; Isik et al. 2021; Thomas et al. 2022; Vogels et al.
2018] has shown remarkable progress in denoising quality. By predicting denoising filter weights in
a process of training on a large dataset, neural denoisers achieve high-quality renderings compared
to hand-crafted analytical denoisers [Schied et al. 2017].

As deep learning-based supersampling techniques have become widely adopted in the real-time
rendering industry to improve framerates by rendering at a lower resolution, unified denoising
and upscaling methods have emerged to further improve framerates for real-time ray tracing.
However, the quality may deteriorate when a denoiser and upscaler are naively combined, as
the denoiser eliminates the subpixel viewport offset at low resolution, which a upscaler relies on.
Hence, employing a single neural network for joint denoising and supersampling [Thomas et al.
2022] offers the advantage of sharing learned parameters in the feature space, enabling efficient
prediction of filter weights for both denoising and upscaling.

In this work, we propose a joint neural denoising and upscaling technique for path-traced ren-
derings with very low samples per pixel (1spp). Our technique produces spatio-temporally stable
denoising results at a higher resolution through our sophisticatedly designed feature extraction
neural network. First, we introduce a multi-branch U-Net (MUNet) to take account of different
characteristics in a noisy radiance input and noise-free, aliased auxiliary buffers like albedo, normal,
and roughness. Oh and Moon [2024] use a transformer block with joint self-attention to consider
two input sources with different properties. However, transformer blocks remain computationally
expensive in spite of adopting common optimization methods. The number of learnable parameters
in their denoising framework is 33.35 M. Our MUNet, however, is lightweight with 0.644 M learnable
parameters for joint denoising and upscaling. Second, as a feature extraction network, our MUNet
generates multi-scale features from multi-branch, from which we derive spatial and temporal filter-
ing weights for temporal accumulation, upscaling, and multi-scale denoising. Third, our technique

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

https://doi.org/10.1145/3728297

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:3

replaces multiple denoisers used for different lighting effects in MC rendering by denoising all noisy
signals as well as upscales to a target resolution in a single pass, similar to Thomas et al. [2022].
However, our approach does not require separated diffuse and specular noisy signals as input since
we derive radiance composition weights from the features our MUNet learns for implicit radiance
decomposition. Finally, we evaluate our technique on a diverse dataset with complex geometry and
lighting effects in two scenarios: joint denoising and upscaling, and denoising-only (1X upscaling).
Our results demonstrate greater efficacy in producing high-quality fine details compared to the
state-of-the-art techniques. The contributions of our technique are summarized by the following:

o A lightweight multi-branch feature extraction network to incorporate different characteristics
in noisy radiance input and noise-free, aliased auxiliary buffers.

o Implicit noisy radiance decomposition to eliminate the need for separate noisy radiance
signals in input.

o A state-of-the-art joint MC denoising and upscaling technique generating superior fine-details
via a multi-branch and multi-scale feature network.

2 Related Work

Deep learning-based denoising techniques for MC renderings have been actively researched over a
decade with great success [Back et al. 2022; Bako et al. 2017; Balint et al. 2023; Chaitanya et al. 2017;
Fanetal. 2021; Gu et al. 2024; Isik et al. 2021; Kalantari et al. 2015; Meng et al. 2020; Thomas et al. 2022;
Vogels et al. 2018; Xu et al. 2019; Zhang et al. 2024]. While analytical denoising filters [Dammertz
et al. 2010; Koskela et al. 2019; Kozlowski and Cheblokov 2021; Schied et al. 2018, 2017; Zhdan 2021]
and their variants continue to be widely used for real-time rendering, neural denoisers generally
yield higher-quality results. In addition, neural denoisers are getting more attention for real-time
path tracing [Kandar and Sjoholm 2024; Murphy et al. 2024] when an upscaling technique is taken
into account [NVidia 2023; Thomas et al. 2022]. In this section, we focus on recent works relevant
to our research. For a wider overview of deep-learning based denoising techniques, we refer to
comprehensive surveys by Huo and Yoon [2021].

Kernel prediction-based neural denoisers [Bako et al. 2017; Gharbi et al. 2019; Vogels et al. 2018]
have demonstrated improved fine detail preservation by utilizing large filtering kernels, achieving
better quality at the cost of performance and memory. Other optimized techniques [Fan et al.
2021; Isik et al. 2021; Meng et al. 2020; Thomas et al. 2022] have also been researched. Meng et
al. [2020] employ a lightweight network architecture to guide a bilateral grid filter. Isik et al. [2021]
predict per-pixel feature vectors to generate filter kernels. Fan et al. [2021] predict an encoding of a
per-pixel kernel as a compact single-channel representation which is decoded to create filtering
kernels to address a heavy inference overhead when predicting filters with large size kernels.
With our lightweight multi-branch feature network, we predict per-pixel feature vectors to derive
multiple filtering kernels.

Auxiliary buffers, such as geometric and material features from G-buffers, are frequently em-
ployed in feature-guided denoising by concatenating them with a noisy radiance as input. Yang
et al. [2019] focus on redundant information in auxiliary buffers and use a dual encoder U-Net to
extract useful information from auxiliary buffers to guide the denoised output reconstruction. Xu
et al. [2019] present a conditioned feature modulation to integrate separately encoded auxiliary
features into a denoising network for better utilization of auxiliary features throughout denoising
network layers. Oh and Moon [2024] take different characteristics in noisy radiance and auxiliary
features into account and generate dual attention scores from a noisy radiance and auxiliary features
in a transformer-based denoising framework, achieving improved denoising quality with detailed
image feature structures. Inspired by the previous studies on recognizing different nature in a noisy

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:4 Kazmierczyk et al.

Fig. 2. Different characteristics in rendered buffers. Noise-free, aliased diffuse albedo, specular albedo, normal,
and roughness (from left to right). Noisy color (right). Scene from ZeroDay [Winkelmann 2019].

radiance and auxiliary features, we propose a multi-branch U-Net as a feature extraction network.
Different from the prior works [Oh and Moon 2024; Yang et al. 2019], our technique is designed for
spatio-temporally stable joint denoising and upscaling.

U-Net [Ronneberger et al. 2015] is widely used for image reconstruction problems thanks to its
large receptive fields. Several variants of U-Net have been researched in order to improve image
reconstruction quality, such as dual encoders [Yang et al. 2019], dual U-Nets [Thomas et al. 2020],
attention modules and transformer blocks [Chen et al. 2023b, 2024; Lin et al. 2021; Oh and Moon
2024; Yu et al. 2021]. Moreover, the multi-scale filtering kernels learned from the U-Net architecture
are widely adopted to take the benefit from large receptive fields and avoid a performance impact
from large filter kernels for kernel prediction-based denoising [Balint et al. 2023; Thomas et al. 2022;
Vogels et al. 2018]. We build our feature extraction network by using a multi-branch approach on top
of a U-Net architecture, one branch for noisy radiance and the other branch for noise-free, aliased
guiding buffers, which generates multi-branch, multi-scale features for denoising and upscaling
filter kernels.

Instead of denoising noisy color images, many prior works either decompose the noisy color in
a data pre-processing stage or require separated diffuse and specular signals as input to predict
denoising filter kernels for each noisy signal, achieving considerable quality improvements [Bako
et al. 2017; Thomas et al. 2022]. Learning radiance decomposition with a neural network [Zhang
et al. 2021] is less intrusive when working with noisy color as input, rather than taking separated
noisy diffuse and specular radiance. Inspired by Zhang et al. [2021], our technique takes a noisy
color from MC rendering as input, not requiring to have diffuse and specular signals separately.
However, different from their work, we predict radiance composition weights for an implicit
radiance decomposition, then apply the predicted radiance composition weights after denoising
filtering.

Denoising often removes or reduces salient information that might be useful for subsequent
post-processing steps like resolution upscaling. Thomas et al. [2022] present joint denoising and
supersampling by predicting multi-scale denoising filter kernels and upscaling filter kernels from a
single network architecture. Such joint denoising and upscaling with a single neural network offers
the advantage of sharing learned parameters in the feature space to efficiently predict denoising
filter kernels and upscale filter kernels. Moreover, rendering at a low resolution with low samples
per pixel provides a performance benefit, allowing for more time budget to be allocated to neural
denoising in reconstructing high-quality pixels. DLSS Ray Reconstruction [NVidia 2023] appears
to use equivalent techniques, but detailed information remains unavailable to the public. Our
technique aims to achieve the same objective in this context, as we propose a technique to jointly
solve MC denoising and resolution upscaling. However our technique is distinguished from Thomas
et al’s work by our contributions.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:5

history data
depth _ I
motion vectors —————> T 1
Fpo,F Fi -
normal 0, Fgo I 1
o | Py T !
diffuse albedo g o i FoF T
specular albedo 4 72, Fg2 e
jiter —————— & istory history Denoising
radiance input: guiding input: }ogn
noisy color (1spp) ——— £ i Modaton & Radiancs compositon
I S— doncsea
ot lenoise
Input
layer (32) o) Fro ?gn —— upscaled
Mutti-scale fittering ~ °UtPut 0

Encoder
layer 0

Decoder '\ !)
(82 |+@2)e— layer0 Mutti-branch
ConvRes
Encoder (MConvRes)
tayer 1 (32) (32) (@2 F, gt block
—]
1 Decoder ¥
(32) oo e X
i tayer1
Frz t ¥
Encoder 8) a8)) F, ¥
layer2 g +
— input/output data flow - (48 — T
——» internal data flow 48) —— T ¥
——> radiance branch flow Decoder
—— guiding branch flow “8) EzE 2 | oy 2
— predicted weights flow I |
conv(k=1,s=1) 1 1 Multi-branch
downsample conv(k=2,s=2) ;o 6{‘ PConvRes
I merge block with resize / concat / conv(k=T,s=1) (80) 64 (MPConvRes)
conv(k=3,5=1) l block
I partial conv(k=3,5=1) (80) <+—(80) —
convRes with partial conv and merge from guiding
convRes with merge from guiding (80) v
—
I convRes 0) S e
@ element-wise mult Bottleneck
(80) block v
@ element-wise add | +
I
v v

Fig. 3. Overview of our technique with detailed structure of our multi-branch feature extraction network. Input
processing prepares input to our neural network. Multi-branch U-Net architecture (MUNet) is designed with
the radiance and guiding branches. Encoder and decoder layers are composed of MConvRes and MPConvRes
blocks. Our network learns multi-scale features from decoder layers for radiance and guiding separately,
which are used in the multi-scale filtering stage to denoise the noisy color image and upscale to a target
resolution. The number of output features from each layer is shown in parentheses. The ReLU activations are
used, but not presented for the sake of brevity.

3 Our Approach

We propose a technique to achieve high-quality denoising for MC renderings with one sample
per pixel while jointly upscaling resolution. To do this, we introduce a multi-branch, multi-scale
feature extraction network architecture.

3.1 Motivation

There exists little research [Oh and Moon 2024] taking different characteristics in the auxiliary
buffers into account for neural denoising. For instance, auxiliary buffers (diffuse albedo, specular
albedo, normal, roughness) are not noisy but aliased as shown in Figure 2. We are inspired to
construct a multi-branch U-Net (MUNet) to account for such a difference, in which a guiding
branch extracts features from auxiliary guiding buffers separated from a radiance branch for a noisy
radiance input within a single feature extraction network.

Since the auxiliary buffers are not noisy but just aliased, and contain redundant information [Yang
et al. 2019], we structure relatively small and shallow layers for the guiding branch. This enables
the creation of a lightweight feature extraction network. The features from the guiding branch are
merged into the radiance branch per layer to assist feature extraction from noisy radiance. Figure 3
presents an overview of our technique with focus on the MUNet. Our technique consists of three
stages: pre-processing (Section 3.2), multi-branch and multi-scale feature extraction (Section 3.3),
and multi-scale filtering for joint denoising and upscaling (Section 3.4).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:6 Kazmierczyk et al.

3.2 Pre-processing

The pre-processing stage prepares input for the MUNet from the current and history data. In Figure 3
(top-left), data from the current frame includes a noisy 1spp color and multiple guiding buffers like
normal, roughness, diffuse/specular albedo. We use p-Law tonemap, as suggested by Kalantari and
Ramamoorthi [2017], to tonemap the noisy color in a high-dynamic range to the range [0.0,1.0].
The noisy color and guiding buffers are then unjittered by the camera jitter values from rendering
which are scaled by 2x to produce noisy radiance (I’) and guiding buffers (Ig’) in a target resolution.

Our technique exploits a recurrent architecture where history data from the previous output
is reused as input for the current frame. Given the motion vectors at the same low resolution as
the noisy color, we upscale the motion vectors to the target resolution after dilating the motion
vectors using a 3x3 filter and depth. The history data is reprojected by the motion vectors to align
to the current frame, (I’), in a target resolution. Our history data includes temporally accumulated
radiance and diffuse/specular albedo. We also maintain the number of accumulated samples per
pixel that is weighted by the predicted accumulation weights for radiance and diffuse/specular
albedo in the multi-scale filtering stage. We use Sinusoidal positional encoding, which was proposed
in the Transformer architecture [Vaswani et al. 2017], to generate higher-dimensional embeddings
from the weighted number of accumulated samples as history data. Hence, we prepare reprojected
history radiance (If ') and history guiding input (I;~"). Finally, the MUNet uses (I},I}~") for the
radiance branch and (I,I;~") for the guiding branch.

3.3 Multi-branch, Multi-scale Feature Extraction

We devise the MUNet to incorporate different characteristics in a noisy color input and noise-free,
aliased guiding buffers while learning features for denoising and upscaling filtering. As shown
in Figure 3, our feature extraction network is composed of three encoder and decoder layers with a
U-Net architecture. We use 2x2 convolution with a stride of 2 to downsample the input features
for encoder layers as well as the input layer. In decoder layers, 2Xx nearest-neighbor interpolation is
used to upsample the input features. In each layer, we devise a multi-branch convolutional residual
(MConvRes) block for separated radiance and guiding branches. The output features from the
guiding branch is merged to the residual features in the radiance branch through an element-wise
multiplication. 1X1 convolution is optionally added to match the number of channels from the
guiding branch to the radiance branch.

To create a lightweight network, we use a multi-branch partial convolutional residual (MPCon-
vRes) block for all layers except the first encoder and the last decoder layers (Encoder layer 0 and
Decoder layer 0). The MPConvRes block is a variant of the MConvRes with a partial convolution
where we apply convolution to the portion of input features in a channel dimension (e.g., first
half channels) and directly concatenate the features in remaining channels with the convolution
output. Our MPConvRes block can be viewed as an extension of the partial ConvRes block [Chen
et al. 2023a] for a multi-branch network. The first encoder and the last decoder layers are more
sensitive to the low-level image features. Hence, we retain the MConvRes block for them to avoid
any loss of information when using the partial convolution. Inner encoder and decoder layers are
less sensitive to quality when utilizing the MPConvRes blocks.

The guiding branch consists of smaller number of convolutional residual (ConvRes) blocks and
output features than the radiance branch. Since the auxiliary guiding buffers are noise-free, aliased
and contain redundant information, our insight is that a small-scale configuration for the guiding
branch is sufficient, which also helps us create a lightweight feature extraction network.

Our network learns multi-scale radiance features (%,0,%,1,%,2) and multi-scale guiding features
(Fg0.Fg1,F42) from three decoder layers. We demonstrate the benefit of our multi-branch network

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:7

by comparing against a single branch U-Net with the equivalent number of parameters in Figure 7
and Table 4.

3.4 Multi-scale filtering for joint denoising and upscaling

Given the pair of multi-branch and multi-scale radiance and guiding features (0,7), (F1,%41)
and (F,2,%) learned from the MUNet, we first predict per-pixel feature vectors by 1X1 convolution
in three different scales and derive weights for 3x3 Gaussian filters for denoising. We also resize
(F0,F) to generate radiance and guiding features at a target resolution, (#,»,%). Similarly, we
then use 1Xx1 convolution to predict per-pixel feature vectors to derive weights for multiple filters
at a target resolution, which we utilize for upscaling, temporal accumulation, denoising, implicit
radiance decomposition, and blending. We adapt the partitioning pyramids approach [Balint et al.
2023] for our denoising filtering.

Based on the predicted per-pixel feature vectors at a target resolution, we apply a 3X3 Gaussian
filter to the noisy 1spp color input after upscaling with nearest neighbor interpolation (I,»). We
also accumulate the upscaled noisy color (I,») with the temporally accumulated radiance in our
history data (I'~!) by using the predicted accumulation weight for radiance. This results in the
upscaled and temporally accumulated noisy color (I,»). We apply the same operations to diffuse
and specular albedo in the guiding buffers, but with filters derived for guiding buffers. The upscaled
and temporally accumulated noisy color (I,») is then demodulated by the upscaled, accumulated
diffuse and specular albedo (fg " ,jgsh), as implicit radiance decomposition, producing the input to
the denoising filtering (9 ()). We apply the radiance composition weights (p,o,7), predicted from
the (%,1,%4), to the output of the denoising filtering in channel dimension and modulate back by
(fg w jgsh). This is composited with the upscaled color (I») by the predicted composition weight
(x). Finally, we blend the output (o’) with the history output (O’~!) based on the predicted history
accumulation weight () to produce the final output (O%).

Lin Ln -
ogn = D(concat| i L)),
Logn Iy

o' = pogn[0: 3Dy +0(0gn[3: 6)In+7(0gn[6: 9]) + KL,
of = lerp(ot, o' ! w).

4 Implementation
4.1 Dataset generation

We collect a dataset from diverse complex scenes rendered using the Falcor framework [Kallweit
et al. 2022]. We render temporal sequences of thousands of frames from different camera viewpoints
with diverse lighting conditions. Noisy color images are path-traced in 19201080 resolution with
1spp and the ReSTIR Direct Illumination [Bitterli et al. 2020] enabled. We carefully review our
data images to confirm that they do not have strong correlation artifacts perceptually. All guiding
buffers (normal, roughness, diffuse albedo, specular albedo), depth and motion vectors are collected
in the same resolution to the noisy color image. The camera jitter values are captured per frame.
Reference images are path-traced in 3840x2160 resolution with 8192 spp. We divide the collected
frames into train, validation and test datasets that have different camera trajectories and/or lighting
conditions. Table 1 shows the scenes and the number of frames we collect from each scene for train,
validation and test dataset. All results we present are from the test dataset.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:8 Kazmierczyk et al.

Table 1. Our data scenes. Bistro [Lumberyard 2017], ZeroDay [Winkelmann 2019], other scenes from Unreal
Engine marketplace with our modification. For data diversity, we render three scenes with two different
lighting. We divide collected frames into train, validation and test datasets that have different camera
trajectories. We also show average render time per frame with 1spp in 1920x1080 and 8192 spp in 3840x2160.

Training Validation Testing | 1spp, 1080p 8192 spp, 4K
Scene s ;
frames frames frames | (milliseconds) (minutes)
Bistro-Day 1998 160 1417 10.98 5.19
Bistro-Night 1577 - 1998 10.76 5.26
ZeroDay-MeasureOne 480 - 320 5.68 291
ZeroDay-MeasureSeven 399 - 480 6.15 3.13
Victorian Train-Base 1160 160 960 7.09 3.55
Victorian Train 1120 - 1160 7.20 3.58
City Alley 1958 - 1625 8.68 4.12
Evermotion (Pool house) 970 160 640 8.89 4.63
Sicka-Mansion - - 100 7.10 3.48
Museum - - 100 6.43 3.20
4.2 Training

We implement our technique in PyTorch [Ansel et al. 2024] and train on AMD Instinct™ MI210
GPUs for 120 epochs with a batch size of 4. We use the Adam [Kingma and Ba 2014] optimizer
with an initial learning rate of 8e-4 and weight decay of le-2. During training, we use 384x384
input patches cropped from our training dataset. For the temporal accumulation in our recurrent
architecture using a history output, we use 30 consecutive frames in the same batch.

4.3 Loss functions

We calculate a final loss (Lo) by the weighted sum of spatial loss (Ls), temporal loss (£Lr), and
perceptual loss (Lp), where we set & = 1.0, f = 1.0, and y = 0.1 for each loss. We gradually increase
the temporal loss weight $ up to 2.0 to emphasize temporal stability over training epochs.

Lo=als+BLr+yLp,
.[:5 = .E? + LZ,
-£T = Ll (V(Ot» (W(Ot_ls I:nh))’ V(Rt’ W(Rt_la I,tnh)))s

where our spatial loss Ls is also the weighted sum of different losses: L¢ for a color output and
L for guiding albedo buffers in a target resolution. For £2, we use the SMAPE (Symmetric Mean
Absolute Percentage Error) between the output (O?) and reference (R’) images. For £, we calculate
the sum of L, losses for the upscaled diffuse and specular albedo buffers over reference diffuse
and specular albedo buffers. Lt is calculated by L; of temporal gradient (V()) between the current
output at time ¢ and the previous output at time ¢ — 1 after reprojecting (‘W ()) the previous output
(O'71) and reference (R*~!) images with the upscaled motion vectors (I r’n ,)- We use the LPIPS [Zhang
et al. 2018] for Lp.

5 Results and Discussion

We evaluate and discuss the quality of our technique for multiple test dataset including unseen test
scenes presented in Table 1. The test dataset is not included in training our network model.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:9

BisTrO-DAY

CIiTY ALLEY

PooL HOUSE

" Ours (4K) . Ref(81925pp,4K) Input N Ours JNDS ONND-+up2x Ref

Input (1spp,1080p)

Fig. 4. Denoising and upscaling quality comparison from test dataset in 4K against prior works, JNDS [Thomas
et al. 2022] and ONND [NVidia 2021] with a built-in 2X upscale. Quality metrics (SSIMT/LPIPS]) are calculated
on a full resolution image. We denote in bold the best quality score. Noisy input in 1080p is shown in 2x
upscaled for visualization purpose. Our results outperform the prior techniques for these test dataset in visual
and quantitative quality.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:10 Kazmierczyk et al.

SICKA-MANSION

Ours (4K)

Ref (8192spp,4K)

Input (1spp,1080p) Input ' Ours JNDS ONND-+up2x Re

Fig. 5. Denoising and upscaling quality comparison from unseen test scenes in 4K against prior works,
JNDS [Thomas et al. 2022] and ONND [NVidia 2021] with built-in 2x upscale. Quality metrics (SSIMT/LPIPS])
are calculated on a full resolution image. We denote in bold the best quality score. Noisy input in 1080p is
shown in 2x upscaled for visualization purpose. Our results outperform the prior techniques for these unseen
scenes in visual and quantitative quality.

5.1 Joint Denoising and Upscaling Quality

We compare our denoised, upscaled results against two state-of-the-art prior works, JNDS [Thomas
et al. 2022] and ONND [NVidia 2021]+up2x, which support both denoising and upscaling. We
implement the JNDS based on the details published by Thomas et al. [2022] and employ the
perceptual loss function implemented by Balint et al. [2023]. We train the JNDS with the same
training dataset for fair comparison. We generate the ONND+up2x results from the OptiX™ SDK
8.0.0 with a built-in 2X upscaling option. The noisy 1spp color image is used as input for our
technique and ONND+up2x. We use separated noisy 1spp diffuse and specular radiance images as
input for JNDS as described in the paper. All input and guiding buffers have resolution 1920x1080
and the target image has resolution 3840x2160 for 2X upscale.

In Figure 4, our method shows superior visual quality to competing techniques by reconstructing
better high frequency details in various test datasets as highlighted in insets. Our results present
better thin objects, complex geometry details, glossy reflection and texture patterns without
extensive blurring than other methods. We also compare quantitative quality by calculating widely
used image quality metrics, structure-oriented SSIMT and perception-oriented LPIPS|. For all test
dataset in Figure 4, our method shows better SSIM and LPIPS metrics than other methods. We also
present quality comparison for unseen test scenes to further highlight the generalization capability
of our method to new scenes. Any frames from these unseen test scenes (Sicka-Mansion, Museum)
are not included in training. In Figure 5, our results outperform other techniques in visual and
quantitative quality with superior geometry and texture details.

5.2 Denoising-only Quality

We also compare our technique with the state-of-the-art neural denoisers including ONND [NVidia
2021], OIDN [Afra 2024], and JSA [Oh and Moon 2024]. We train our technique with 1x upscale

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:11

0.954 / 0.069 “ 0.873/0.238 \| 0.896 / 0.200 “ 0.908 / 0.170 \
& A - >

BisTro-D

0.965 / 0.053

0.920/0.215

0.874/0.248 ‘l 0.895/0.217 il‘ 0.662 / 0.369 -\ i

0.865/0.289 0.877 / 0.254

Input Ours-uplx ONND OIDN JSA

8192spp,1080p,

Input (1spp,1080p) Ours-uplx Ref (.)

Fig. 6. Denoising-only quality comparison in 1920x1080 resolution from test dataset against the state-of-the-
art denoisers. Our technique is trained with 1X upscale to generate denoising-only results without upscaling.
For ONND [NVidia 2021], we use the OptiX™ SDK 8.0.0. For OIDN [Afra 2024], we use a pre-trained model
from the publicly available pre-built binary. JSA [Oh and Moon 2024] is trained with our training dataset.
Quality metrics (SSIM1/LPIPS|) are calculated on a full resolution image. We denote in bold the best quality
score. Our method shows superior quality in preserving fine-details in denoising results. Other methods
overblur high-frequency details and glossy reflection. JSA shows noticeable artifact for dark scenes like
ZeroDay and Bistro-Night.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:12 Kazmierczyk et al.

Table 2. Temporal quality comparison of our supplemental video results for test dataset. We measure metrics
using FovVideoVDP. Higher score is better. Our results present better temporal quality metrics than other
methods for these test dataset including the unseen test scene.

FovVDPT Ours JNDS ONND+up2x
City Alley 5.9864 5.7055 5.1658
Bistro-Day 7.1451 6.6358 6.6695
ZeroDay-MeasureSeven | 6.8204 6.5874 6.2736
Sicka-Mansion 6.9806 6.7798 6.1398

to compare denoising-only quality in the 1920x1080 input resolution. We use a pre-built binary
for ONND from the OptiX™ SDK 8.0.0 without an upscale option. We use a pre-built binary for
OIDN from the latest version 2.3.0 with the high quality mode. We use a noisy 1spp color image as
input with albedo and normal as auxiliary buffers in 1920x1080 resolution for ONND and OIDN.
JSA [Oh and Moon 2024] is a transformer-based denoising technique with a self-attention through
dual attention scores to consider different characteristics in noisy radiance and auxiliary buffers.
We train the Pytorch implementation published by the authors with our training dataset after
modifying the data loader.

Figure 6 demonstrates that our technique achieves superior denoising quality with sharper
details compared to the state-of-the-art neural denoisers. Other techniques generate extensively
over-blurred pixels in many results. Our results in the Bistro-Day successfully preserve the fine-
details in the rough wall and high-frequency foliage. For highly reflective surfaces like the ZeroDay
scene, all techniques show low quality with loss of details. However, our technique is able to better
reconstruct the details in reflections on glossy surfaces than other methods as presented in ZeroDay,
Bistro-Night and Victorian Train scenes. JSA shows more high-frequency details than ONND and
OIDN in Bistro-Day and Victorian Train scenes but introduces noticeable artifacts for dark scenes
like ZeroDay and Bistro-Night.

5.3 Temporal Stability

We demonstrate strong temporal stability of our results by the supplemental video comparing with
other methods. To achieve temporally stable quality, our technique utilizes history reprojection
by motion vectors (Section 3.2), temporal accumulation of radiance, diffuse albedo and specular
albedo (I,x, I n, I » in Figure 3) (Section 3.4), and temporal loss (Section 4.3) as described in each
section. Note that our temporal accumulation is performed with predicted accumulation filtering
weights based on the learned features from our multi-branch feature extraction.

In Table 2, we present quantitative temporal quality comparison of our supplemental video
results by perception-informed FovVideoVDP! [Mantiuk et al. 2021] that is a video quality metric
capturing temporal distortion and flickering artifacts perceivable by human. In both visual and
quantitative metric, our results show better temporal quality than other methods for the test dataset
including the unseen test scene (Sicka-Mansion).

5.4 Computational Overheads

We believe that apple-to-apple runtime performance comparison is not feasible with different
implementation of methods. ONND [NVidia 2021] is from the OptiX™ SDK. OIDN [Afra 2024]
in the released binary is CPU-based. Ours, JNDS [Thomas et al. 2022] and JSA [Oh and Moon
2024] are in PyTorch implementation without inference runtime optimization like layer fusions and

1FovVideoVDP v1.2.0, 75.4 pix/deg, Lpeak = 200, Lblack = 0.5979 cd/m?, non-foveated

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:13

Table 3. The number of trainable parameters in millions and GFLOPs for our technique and comparative
methods. We also show the runtime of our technique compared to JNDS and JSA, all of which are in
unoptimized PyTorch implementation, in milliseconds (ms) on AMD Instinct™ MI210 GPU. Note that ours
and JNDS are for joint denoising and upscaling to 4K resolution, and other methods are denoising-only in
1080p resolution.

| Ours JNDS | JSA ONND OIDN

of params (M) 0.644 2.7 |33.35 1.5 0.92

GFLOPs 396 386 | 8206 - 524
Feature extraction network time (ms) | 53 51 - - -
Inference time (ms) 248 137 | 3760 - -

quantization. Hence, to estimate computational overheads in inference, we compare the number
of trainable parameters based on information published from each baseline technique and the
number of floating-point operations (FLOPs) in Table 3. While a smaller number of parameters and
FLOPs may indicate a faster inference time, it is important to note that there is not always a direct
relationship between these quantities and inference runtime. For ONND, we calculate the number
of parameters based on the work by Chaitanya et al. [2017] that is used in Optix version 5, but there
is no information for the latest version. For OIDN, we calculate the number of parameters from the
UNet of OIDN. We collect GFLOPs using the PyTorch profiler during inference with 1920x1080
render resolution and 2X upscaling to 3840x2160.

Although the runtime profiling from the PyTorch implementation does not represent optimized
inference runtime, we show the GPU time on AMD Instinct™ MI210 for our technique compared to
JNDS and JSA, all of which are implemented in PyTorch (FP32) without any inference optimizations,
to provide insights into how our technique scales compared to others. For our technique and JNDS,
the feature extraction network time represents the time used by the neural network: MUNet for
ours and the feature extractor U-Net for JNDS. Inference time represents GPU time for per-frame
inference. These timings do not vary across different scenes but change for different resolutions, as
they are screen-space techniques.

As shown in Table 3, our proposed multi-branch network architecture is lightweight with only
0.644 M parameters which is much smaller than other methods. Our network architecture presents
smaller GFLOPs than OIDN and similar to JNDS. We observe similar timings between the proposed
MUNet in our technique and the feature extraction U-Net in JNDS. For end-to-end inference time
per frame, our technique shows 1.8x longer GPU time than JNDS, where we perform multi-scale
filtering for denoising and filtering for upscaling. We expect our technique to achieve close to
real-time performance when implementing common inference optimizations, such as layer fusions
and low-precision quantization, on contemporary GPUs while offering superior quality to the
state-of-the-art prior techniques.

To illustrate the potential savings by rendering at 1spp in 1920x1080 resolution compared to
8192 spp in 3840%2160 resolution, we also present the average render time per frame of our data
scenes in Table 1. Based on the render time shown in Table 1, rendering with 1spp in a lower
resolution takes only a few milliseconds per frame. Our technique can be applied to denoise and
upscale, producing high-quality images at the target resolution.

5.5 Multi-branch vs. single branch

We perform an ablation study to demonstrate the advantage of our multi-branch U-Net architecture
compared to a standard single branch U-Net in joint MC denoising and upscaling guided by auxiliary

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:14 Kazmierczyk et al.

BisTrO-DAY . — = 7 8] Pool HOUSE

Fig. 7. Results from our technique with the proposed multi-branch U-Net (top inset) and a single branch
U-Net (middle inset) for feature extraction. Reference (bottom inset) is also shown for comparison. Although
overall quality converges similarly, our multi-branch U-Net is more robust in reconstructing complex areas as
highlighted in insets. Scenes from Bistro-Day [Lumberyard 2017] (left) and Evermotion Pool House (right).

Table 4. Quality metrics comparison between our multi-branch U-Net and single-branch U-Net for test
dataset in Figure 7. We average quality metrics from a sequence of frames for PSNRT, SSIMT and LPIPS|. We
also show FovWDPT as a temporal quality metric. All metrics are calculated on full resolution images. We
denote in bold the best quality score.

Ours w/ multi-branch Ours w/ single-branch
Bistro-Day Pool House | Bistro-Day Pool House
FovVDPT 7.649 5.898 7.612 5.992
PSNRT 35.868 30.162 35.671 30.024
SSIMT 0.920 0.797 0.918 0.791
LPIPS| 0.134 0.240 0.142 0.248

buffers. The pre-processing and multi-scale filtering stages in our technique are reused. To do
this, we concatenate the noisy 1spp color and all guiding buffers in the pre-processing stage and
use them as input to a single branch U-Net. To focus on the multi-branch versus single branch
comparison, we utilize the same convolutional residual (ConvRes) blocks, downsample convolution
and merge blocks for the single branch U-Net while we reduce the number of output features
to make the number of learnable parameters equivalent to our lightweight multi-branch U-Net
architecture. From the single branch U-Net, we get (F(.4)0,F(r¢)1,F(r¢)2) that are used to derive
filtering kernel weights in our multi-scale filtering stage.

From visual quality comparisons for test dataset in Figure 7, we see that the features from our
proposed multi-branch U-Net are useful in reconstructing complex details and robust temporal
quality. The results using a single branch U-Net show severe ghosting and overblurred shadow
(middle insets). Table 4 shows quality metrics comparison for the dataset shown in Figure 7. We
average metrics from a sequence of frames for PSNR, SSIM and LPIPS. We also show FovVDP for
temporal quality. Although the difference in quantitative metrics between multi-branch U-Net and
single-branch U-Net is small, our multi-branch U-Net shows slightly better score in most metrics
as well as in visual quality.

5.6 Partial convolution vs. full convolution

We conduct an ablation study to demonstrate the benefits of our design choice to use partial
convolution (MPConvRes block) in most layers of our MUNet, compared to a full convolution. To
do this, we replace all MPConvRes blocks in our MUNet with MConvRes blocks and train it using

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:15

Table 5. Comparison between our multi-branch U-Net with a partial convolution (MPConvRes) and with a
full convolution in all layers. We average quality metrics from frames in unseen test scenes for PSNRT, SSIMT
and LPIPS|. We also show FovWDPT as a temporal quality metric. We observe that changes in quality metrics
are marginal when using partial convolutions (MPConvRes blocks). We gain benefits in performance with a
38.6% smaller number of parameters, 18.5% lower GFLOPs, and 3.6% faster time for our MUNet.

Ours w/ partial convolution ~ Ours w/ full convolution
Sicka-Mansion = Museum | Sicka-Mansion Museum
FovVDPT 6.981 8.240 6.964 8.087
PSNRT 36.478 37.664 37.444 38.101
SSIMT 0.947 0.956 0.953 0.958
LPIPS| 0.128 0.122 0.126 0.111
of params (M) 0.644 1.05
GFLOPs 396 486
Network time (ms) 53 55

Input (1spp,1080p) Ours Ref (8192spp,4K)

Fig. 8. Quality limitation in our result for highly reflective surfaces, in which lack of valid information in a
noisy 1spp input and auxiliary guiding buffers to reconstruct the secondary surface pixels reflected on the
floor. Scene from ZeroDay [Winkelmann 2019].

the same training dataset. The pre-processing and multi-sacle filtering stages in our technique are
reused.

From the quality metrics comparison for the unseen test dataset (Sicka-Mansion, Museum)
in Table 5, we see only marginal changes in the quality metrics. The partial convolution in our
MPConvRes block enables us to create a lightweight network, as shown in Table 5, with a 38.6%
smaller number of parameters, 18.5% lower GFLOPs, and 3.6% faster network time compared to
using full convolutions, without compromising the quality. Note that the network time (ms) has
been measured using an unoptimized PyTorch implementation (FP32).

5.7 Limitations

Our technique generates high-quality joint MC denoising and upscaling compared to the state-
of-the-art techniques for very low samples per pixel (1spp). As presented in Figure 4, Figure 5
and Figure 6, our method shows better quality than other methods on glossy reflections as well.
However, we have quality limitations on highly reflective and transparent objects as exampled
in Figure 8, which is expected since we use primary surface buffers so that there exists no valid
information available in our guiding buffers for such highly reflective and transparent objects.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

16:16 Kazmierczyk et al.

Enhancing the guiding buffers with ray-traced secondary surfaces information would be useful to
achieve high-quality reflection, which we leave as a future work.

In addition, we do not consider post-processing effects like volumetric fog, particles, and depth
of field in our dataset since we do not have valid motion vectors from rendering. We leave it as a
future work as well to perform extensive study.

6 Conclusion

We have presented a multi-branch and multi-scale feature extraction network for joint denoising
and upscaling technique that produces high-quality denoising at a higher resolution, given noisy
1spp Monte Carlo renderings in a low resolution. To effectively account for different characteristics
in the noisy radiance and noise-free, aliased auxiliary guiding buffers, we proposed a lightweight
multi-branch U-Net architecture for feature extraction. Our technique demonstrated superior
quality in diverse complex scenes compared to the state-of-the-art techniques for both denoising
and upscaling, as well as denoising-only. In future work, our multi-branch feature extraction
architecture could be leveraged with enhanced guiding buffers for reflective and transparent
surfaces.

References

Attila T. Afra. 2024. Intel® Open Image Denoise. https://www.openimagedenoise.org.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David
Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias
Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch,
Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu
Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu,
and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation
and Graph Compilation. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS °24). Association for Computing Machinery,
New York, NY, USA, 929-947. https://doi.org/10.1145/3620665.3640366

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2022. Self-Supervised Post-Correction for Monte
Carlo Denoising. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH °22). Association
for Computing Machinery, New York, NY, USA, Article 18, 8 pages. https://doi.org/10.1145/3528233.3530730

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NovaK, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice
Rousselle. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36,
4, Article 97 (07 2017), 14 pages. https://doi.org/10.1145/3072959.3073708

Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafal Mantiuk. 2023. Neural Partitioning
Pyramids for Denoising Monte Carlo Renderings. In ACM SIGGRAPH 2023 Conference Proceedings (<conf-loc>, <city>Los
Angeles</city>, <state>CA</state>, <country>USA</country>, </conf-loc>) (SIGGRAPH ’23). Association for Computing
Machinery, New York, NY, USA, Article 60, 11 pages. https://doi.org/10.1145/3588432.3591562

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal
reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. 39, 4, Article 148 (08
2020), 17 pages. https://doi.org/10.1145/3386569.3392481

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai,
and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder.
ACM Trans. Graph. 36, 4, Article 98 (07 2017), 12 pages. https://doi.org/10.1145/3072959.3073601

Bingyi Chen, Zengyu Liu, Li Yuan, Zhitao Liu, Yi Li, Guan Wang, and Ning Xie. 2023b. Monte Carlo Denoising via
Multi-scale Auxiliary Feature Fusion Guided Transformer. In SSIGGRAPH Asia 2023 Technical Communications (Sydney,
NSW, Australia) (SA ’23). Association for Computing Machinery, New York, NY, USA, Article 1, 4 pages. https:
//doi.org/10.1145/3610543.3626179

Chuhao Chen, Yuze He, and Tzu-Mao Li. 2024. Temporally Stable Metropolis Light Transport Denoising using Recurrent
Transformer Blocks. ACM Transactions on Graphics (Proceedings of SSGGRAPH) 4, Article 123 (2024).

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S.-H. Gary Chan. 2023a. Run, Don’t
Walk: Chasing Higher FLOPS for Faster Neural Networks. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 12021-12031. https://doi.org/10.1109/CVPR52729.2023.01157

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

https://www.openimagedenoise.org
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3528233.3530730
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3588432.3591562
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3610543.3626179
https://doi.org/10.1145/3610543.3626179
https://doi.org/10.1109/CVPR52729.2023.01157

Joint Denoising and Upscaling via Multi-branch and Multi-scale Feature Network 16:17

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010. Edge-avoiding A-Trous wavelet transform
for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics (Saarbrucken, Germany)
(HPG ’10). Eurographics Association, Goslar, DEU, 67-75.

Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. 2021. Real-time Monte Carlo Denoising with Weight Sharing Kernel
Prediction Network. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 15-27.

Michaél Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019. Sample-based Monte Carlo denoising
using a kernel-splatting network. ACM Trans. Graph. 38, 4, Article 125 (07 2019), 12 pages. https://doi.org/10.1145/
3306346.3322954

Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, and Bochang Moon. 2024. Target-Aware Image Denoising for Inverse Monte
Carlo Rendering. ACM Transactions on Graphics (Proceedings of SSGGRAPH) 4 (2024).

Yuchi Huo and Sung eui Yoon. 2021. A survey on deep learning-based Monte Carlo denoising. Computational Visual Media
7,2 (2021), 169-185. https://doi.org/10.1007/s41095-021-0209-9

Mustafa Isik, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaél Gharbi. 2021. Interactive Monte Carlo
denoising using affinity of neural features. ACM Trans. Graph. 40, 4, Article 37 (07 2021), 13 pages. https://doi.org/10.
1145/3450626.3459793

James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (08 1986), 143-150. https://doi.org/10.
1145/15886.15902

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning approach for filtering Monte Carlo noise.
ACM Trans. Graph. 34, 4, Article 122 (07 2015), 12 pages. https://doi.org/10.1145/2766977

Nima Khademi Kalantari and Ravi Ramamoorthi. 2017. Deep High Dynamic Range Imaging of Dynamic Scenes. ACM
Transactions on Graphics (Proceedings of SSGGRAPH 2017) 36, 4 (2017).

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’as Davidovi¢, Kai-Hwa Yao, Theresa Foley, Yong He, Lifan Wu, Lucy
Chen, Tomas Akenine-Moller, Chris Wyman, Cyril Crassin, and Nir Benty. 2022. The Falcor Rendering Framework.
BSD-Licensed Github Repository. https://github.com/NVIDIAGameWorks/Falcor

Kiya Kandar and Juha Sjoholm. 2024. Alan Wake 2: A Deep Dive into Path Tracing Technology. https://www.nvidia.com/en-
us/on-demand/session/gdc24-gdc1003/.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014).
https://api.semanticscholar.org/CorpusID:6628106

Matias Koskela, Kalle Inmonen, Markku Mikitalo, Alessandro Foi, Timo Viitanen, Pekka Jaiskeldinen, Heikki Kultala, and
Jarmo Takala. 2019. Blockwise Multi-Order Feature Regression for Real-Time Path-Tracing Reconstruction. ACM Trans.
Graph. 38, 5, Article 138 (06 2019), 14 pages. https://doi.org/10.1145/3269978

Pawel Kozlowski and Tim Cheblokov. 2021. ReLAX: A Denoiser Tailored to Work with the ReSTIR Algorithm. https:
//www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/.

Weiheng Lin, Beibei Wang, Jian Yang, Lu Wang, and Ling-Qi Yan. 2021. Path-based Monte Carlo Denoising Using a
Three-Scale Neural Network. Computer Graphics Forum 40, 1 (2021), 369-381. https://doi.org/10.1111/cgf.14194

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). http://developer.nvidia.
com/orca/amazon-lumberyard-bistro

Rafal K. Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton Kaplanyan, Gizem Rufo, Romain Bachy, Trisha Lian, and Anjul
Patney. 2021. FovVideoVDP: a visible difference predictor for wide field-of-view video. ACM Trans. Graph. 40, 4, Article
49 (July 2021), 19 pages. https://doi.org/10.1145/3450626.3459831

Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker. 2020. Real-time Monte Carlo Denoising
with the Neural Bilateral Grid. In Eurographics Symposium on Rendering - DL-only Track, Carsten Dachsbacher and Matt
Pharr (Eds.). The Eurographics Association. https://doi.org/10.2312/sr.20201133

Michael Murphy, Jakub Knapik, and Pawel Kozlowski. 2024. RT: Overdrive in Cyberpunk 2077 Ultimate Edition - Pushing
Path Tracing One Step Further. https://www.nvidia.com/en-us/on-demand/session/gdc24-gdc1002/.

NVidia. 2021. OptiX Al-Accelerated Denoiser. https://developer.nvidia.com/optixdenoiser.

NVidia. 2023. NVIDIA DLSS 3.5 Ray Reconstruction. https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-5-ray-
reconstruction/.

Geunwoo Oh and Bochang Moon. 2024. Joint self-attention for denoising Monte Carlo rendering. The Visual Computer 40
(06 2024), 1-12. https://doi.org/10.1007/s00371-024-03446-8

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Seg-
mentation. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Nassir Navab, Joachim
Hornegger, William M. Wells, and Alejandro F. Frangi (Eds.). Springer International Publishing (05 2015), 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-time Adaptive Temporal
Filtering. Proc. ACM Comput. Graph. Interact. Tech. 1, 2, Article 24 (08 2018), 16 pages. https://doi.org/10.1145/3233301

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/2766977
https://github.com/NVIDIAGameWorks/Falcor
https://www.nvidia.com/en-us/on-demand/session/gdc24-gdc1003/
https://www.nvidia.com/en-us/on-demand/session/gdc24-gdc1003/
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1145/3269978
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/
https://doi.org/10.1111/cgf.14194
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://doi.org/10.1145/3450626.3459831
https://doi.org/10.2312/sr.20201133
https://www.nvidia.com/en-us/on-demand/session/gdc24-gdc1002/
https://developer.nvidia.com/optixdenoiser
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-5-ray-reconstruction/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-5-ray-reconstruction/
https://doi.org/10.1007/s00371-024-03446-8
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3233301

16:18 Kazmierczyk et al.

Christoph Schied, Marco Salvi, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty Chaitanya, John Burgess, Shigiu
Liu, Carsten Dachsbacher, and Aaron Lefohn. 2017. Spatiotemporal variance-guided filtering: real-time reconstruction
for path-traced global illumination. 1-12. https://doi.org/10.1145/3105762.3105770

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik Vaidyanathan, and Angus Forbes. 2022.
Temporally Stable Real-Time Joint Neural Denoising and Supersampling. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 5 (07 2022), 1-22. https://doi.org/10.1145/3543870

Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G. Forbes. 2020. A reduced-precision network for
image reconstruction. ACM Trans. Graph. 39, 6, Article 231 (11 2020), 12 pages. https://doi.org/10.1145/3414685.3417786

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is All You Need. https://arxiv.org/pdf/1706.03762.pdf

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Réthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novak.
2018. Denoising with kernel prediction and asymmetric loss functions. ACM Trans. Graph. 37, 4, Article 124 (07 2018),
15 pages. https://doi.org/10.1145/3197517.3201388

Mike Winkelmann. 2019. Zero-Day, Open Research Content Archive (ORCA). https://developer.nvidia.com/orca/beeple-
zero-day

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang. 2019. Adversarial Monte Carlo
denoising with conditioned auxiliary feature modulation. ACM Trans. Graph. 38, 6, Article 224 (11 2019), 12 pages.
https://doi.org/10.1145/3355089.3356547

Xin Yang, Dawei Wang, Wenbo Hu, Li-Jing Zhao, Bao-Cai Yin, Qiang Zhang, Xiao-Peng Wei, and Hongbo Fu. 2019. DEMC:
A Deep Dual-Encoder Network for Denoising Monte Carlo Rendering. J Comput. Sci. Technol. 34, 5 (09 2019), 1123-1135.
https://doi.org/10.1007/s11390-019-1964-2

Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiqing Li. 2021. Monte Carlo denoising via auxiliary
feature guided self-attention. ACM Trans. Graph. 40, 6, Article 273 (12 2021), 13 pages. https://doi.org/10.1145/3478513.
3480565

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018. The Unreasonable Effectiveness of
Deep Features as a Perceptual Metric. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 586-595.
https://doi.org/10.1109/CVPR.2018.00068

Xianyao Zhang, Marco Manzi, Thijs Vogels, Henrik Dahlberg, Markus H. Gross, and Marios Papas. 2021. Deep Compositional
Denoising for High-quality Monte Carlo Rendering. Computer Graphics Forum 40 (2021). https://api.semanticscholar.
org/CorpusID:235825097

Xianyao Zhang, Gerhard Rothlin, Shilin Zhu, Tung Aydin, Farnood Salehi, Markus Gross, and Marios Papas. 2024. Neural
Denoising for Deep-Z Monte Carlo Renderings. Computer Graphics Forum 43 (05 2024). https://doi.org/10.1111/cgf.15050

Dmitry Zhdan. 2021. ReBLUR: A Hierarchical Recurrent Denoiser. 823-844. https://doi.org/10.1007/978-1-4842-7185-8_49

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 16. Publication date: May 2025.

https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3543870
https://doi.org/10.1145/3414685.3417786
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1145/3197517.3201388
https://developer.nvidia.com/orca/beeple-zero-day
https://developer.nvidia.com/orca/beeple-zero-day
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1007/s11390-019-1964-2
https://doi.org/10.1145/3478513.3480565
https://doi.org/10.1145/3478513.3480565
https://doi.org/10.1109/CVPR.2018.00068
https://api.semanticscholar.org/CorpusID:235825097
https://api.semanticscholar.org/CorpusID:235825097
https://doi.org/10.1111/cgf.15050
https://doi.org/10.1007/978-1-4842-7185-8_49

	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Motivation
	3.2 Pre-processing
	3.3 Multi-branch, Multi-scale Feature Extraction
	3.4 Multi-scale filtering for joint denoising and upscaling

	4 Implementation
	4.1 Dataset generation
	4.2 Training
	4.3 Loss functions

	5 Results and Discussion
	5.1 Joint Denoising and Upscaling Quality
	5.2 Denoising-only Quality
	5.3 Temporal Stability
	5.4 Computational Overheads
	5.5 Multi-branch vs. single branch
	5.6 Partial convolution vs. full convolution
	5.7 Limitations

	6 Conclusion
	References

